146 research outputs found

    Market-based Allocation of Local Flexibility in Smart Grids: A Mechanism Design Approach

    Get PDF

    Convergence and transdisciplinary teaching in quantitative biology

    Get PDF
    The United States National Science and Technology Council has made a call for improving STEM (Science, Technology, Engineering, and Mathematics) education at the convergence of science, technology, engineering, and mathematics. The National Science Foundation (NSF) views convergence as the merging of ideas, approaches, and technologies from widely diverse fields of knowledge to stimulate innovation and discovery. Teaching convergency requires moving to the transdisciplinary level of integration where there is deep integration of skills, disciplines, and knowledge to solve a challenging real-world problem. Here we present a summary on convergence and transdisciplinary teaching. We then provide examples of convergence and transdisciplinary teaching in plant biology, and conclude by discussing limitations to contemporary conceptions of convergency and transdisciplinary STEM

    Load Balancing in the Smart Grid: A Package Auction and Compact Bidding Language

    Get PDF
    Distribution system operators (DSOs) are faced with new challenges from the continuous integration of fluctuating renewable energy resources and new dynamic customer loads such as electric vehicles, into the power grid. To ensure continuous balancing of supply and demand, we propose procurement package auctions to allocate load flexibility from aggregators and customers. The contributions of this research are an incentive-compatible load flexibility auction along with a compact bidding language. It allows bidders to express minimum and maximum amounts of flexibility along with unit prices in single bids for varying time periods. We perform a simulation-based evaluation and assess costs and benefits for DSOs and balancing suppliers given scenarios of varying complexity as well as computational aspects of the auction. Our initial findings provide evidence that load flexibility auctions can reduce DSO costs substantially and that procurement package auctions are well-suited to address the grid load balancing problem

    A novel function for the Caenorhabditis elegans torsin OOC-5 in nucleoporin localization and nuclear import.

    Get PDF
    Torsin proteins are AAA+ ATPases that localize to the endoplasmic reticular/nuclear envelope (ER/NE) lumen. A mutation that markedly impairs torsinA function causes the CNS disorder DYT1 dystonia. Abnormalities of NE membranes have been linked to torsinA loss of function and the pathogenesis of DYT1 dystonia, leading us to investigate the role of the Caenorhabditis elegans torsinA homologue OOC-5 at the NE. We report a novel role for torsin in nuclear pore biology. In ooc-5-mutant germ cell nuclei, nucleoporins (Nups) were mislocalized in large plaques beginning at meiotic entry and persisted throughout meiosis. Moreover, the KASH protein ZYG-12 was mislocalized in ooc-5 gonads. Nups were mislocalized in adult intestinal nuclei and in embryos from mutant mothers. EM analysis revealed vesicle-like structures in the perinuclear space of intestinal and germ cell nuclei, similar to defects reported in torsin-mutant flies and mice. Consistent with a functional disruption of Nups, ooc-5-mutant embryos displayed impaired nuclear import kinetics, although the nuclear pore-size exclusion barrier was maintained. Our data are the first to demonstrate a requirement for a torsin for normal Nup localization and function and suggest that these functions are likely conserved

    A Unifying Gravity Framework for Dispersal

    Get PDF
    Most organisms disperse at some life-history stage, but different research traditions to study dispersal have evolved in botany, zoology, and epidemiology. In this paper, we synthesize concepts, principles, patterns, and processes in dispersal across organisms. We suggest a consistent conceptual framework for dispersal, which utilizes generalized gravity models. This framework will facilitate communication among research traditions, guide the development of dispersal models for theoretical and applied ecology, and enable common representation across taxonomic groups, encapsulating processes at the source and destination of movement, as well as during the intervening relocation process, while allowing each of these stages in the dispersal process to be addressed separately and in relevant detail. For different research traditions, certain parts of the dispersal process are less studied than others (e.g., seed release processes in plants and termination of dispersal in terrestrial and aquatic animals). The generalized gravity model can serve as a unifying framework for such processes, because it captures the general conceptual and formal components of any dispersal process, no matter what the relevant biological timescale involved. We illustrate the use of the framework with examples of passive (a plant), active (an animal), and vectored (a fungus) dispersal, and point out promising applications, including studies of dispersal mechanisms, total dispersal kernels, and spatial population dynamics

    A Unifying Gravity Framework for Dispersal

    Get PDF
    Most organisms disperse at some life-history stage, but different research traditions to study dispersal have evolved in botany, zoology, and epidemiology. In this paper, we synthesize concepts, principles, patterns, and processes in dispersal across organisms. We suggest a consistent conceptual framework for dispersal, which utilizes generalized gravity models. This framework will facilitate communication among research traditions, guide the development of dispersal models for theoretical and applied ecology, and enable common representation across taxonomic groups, encapsulating processes at the source and destination of movement, as well as during the intervening relocation process, while allowing each of these stages in the dispersal process to be addressed separately and in relevant detail. For different research traditions, certain parts of the dispersal process are less studied than others (e.g., seed release processes in plants and termination of dispersal in terrestrial and aquatic animals). The generalized gravity model can serve as a unifying framework for such processes, because it captures the general conceptual and formal components of any dispersal process, no matter what the relevant biological timescale involved. We illustrate the use of the framework with examples of passive (a plant), active (an animal), and vectored (a fungus) dispersal, and point out promising applications, including studies of dispersal mechanisms, total dispersal kernels, and spatial population dynamics

    Radiation Safety in the Treatment of Patients with Thyroid Diseases by Radioiodine 131I: Practice Recommendations of the American Thyroid Association

    Full text link
    Background: Radiation safety is an essential component in the treatment of patients with thyroid diseases by 131I. The American Thyroid Association created a task force to develop recommendations that would inform medical professionals about attainment of radiation safety for patients, family members, and the public. The task force was constituted so as to obtain advice, experience, and methods from relevant medical specialties and disciplines. Methods: Reviews of Nuclear Regulatory Commission regulations and International Commission on Radiological Protection recommendations formed the basic structure of recommendations. Members of the task force contributed both ideas and methods that are used at their respective institutions to aid groups responsible for treatments and that instruct patients and caregivers in the attainment of radiation safety. There are insufficient data on long-term outcomes to create evidence-based guidelines. Results: The information was used to compile delineations of radiation safety. Factors and situations that govern implementation of safety practices are cited and discussed. Examples of the development of tables to ascertain the number of hours or days (24-hour cycles) of radiation precaution appropriate for individual patients treated with 131I for hyperthyroidism and thyroid cancer have been provided. Reminders in the form of a checklist are presented to assist in assessing patients while taking into account individual circumstances that would bear on radiation safety. Information is presented to supplement the treating physician's advice to patients and caregivers on precautions to be adopted within and outside the home. Conclusion: Recommendations, complying with Nuclear Regulatory Commission regulations and consistent with guidelines promulgated by the National Council on Radiation Protection and Measurement (NCRP-155), can help physicians and patients maintain radiation safety after treatment with 131I of patients with thyroid diseases. Both treating physicians and patients must be informed if radiation safety, an integral part of therapy with 131I, is to be attained. Based on current regulations and understanding of radiation exposures, recommendations have been made to guide physicians and patients in safe practices after treatment with radioactive iodine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90492/1/thy-2E2010-2E0403.pd
    corecore